THE LUMINOSITY FUNCTION OF M DWARF STARS IN SELECTED AREA 109

G.N. MACE
Northern Arizona University, Summer REU student at Ball State

AND

T.M. JORDAN AND T.H. ROBERTSON
Department of Physics and Astronomy; Ball State University, Muncie, IN 47306

ABSTRACT

This paper presents the photometric luminosity classification of M dwarfs in Kaptyn’s Selected Area 109 (SA109) as part of an ongoing program at Ball State University to probe low luminosity star contributions to the luminosity function. The reduction of data taken at the Southeastern Association for Research in Astronomy (SARA) telescope is still in the initial phases, but comparisons of this data to previous data from the National Undergraduate Research Observatory (NURO) and the Ball State Observatory (BSO) show that the classification results are consistent. With a limiting magnitude of R=15.25, we have observed nearly half of a square degree in SA109 and have detected approximately 74 percent of the expected M dwarfs, as determined by the luminosity function. The 26 M dwarfs which have been identified using R, I and CaH photometry, are confirmed using 2MASS J, H an K magnitudes. We present the detections of 17±4.1 early type M dwarfs in half of SA109, compared to the expected value of 16±4 for the entire region as determined the accepted luminosity function.

Subject headings: stars: luminosity function and mass function

1. INTRODUCTION

To understand Galactic structure it is essential to determine the luminosity function, of a large enough local region, so that we can accurately describe the history of the evolutionary process of the Milky Way. In order to find the luminosity function, the distribution and quantities of different spectral types throughout the Milky Way, it is necessary to complete a thorough stellar census. Many sky surveys, and standard lists, are dominated by high luminosity sources. This is due to the historical need for bright standards with shorter integration times, and greater fluxes. Thus, observations of low luminosity stars have been the increased focus of many astronomical programs in the recent years as instrumentation has improved and fainter limiting magnitudes have been attained.

The presence of CaH in the spectra of M dwarfs, and its absence in M giants, was first identified by Ohman (1934). This discrepancy is due to the lower surface pressure of the inflated giant, but its similar temperature to a dwarf. It was also determined that TiO is more abundant in M giants atmospheres than in M dwarfs (Ohman 1934). These observations agree with the restrictions on molecular environments established by Saha’s equation. Thus, CaH can be used to differentiate between M dwarfs and M giants, as well as to probe surface gravity of M dwarfs (Mould & Wallis 1977).

Although the identification of M dwarfs using spectra is very useful it requires a large amount of observing time due to their low luminosity. This restricts the quantity that can be obtained in a single observing run. Since it is our goal to determine the luminosity function we need large samples and so we use intermediate--band photometry. By observing using a intermediate--band CaH filter, we are able to classify M dwarfs using CaH--r vs. R--I color--color plots (Robertson & Scott 2000 (RS2000), Matney et al. 2004). The observed magnitudes are transformed to the Kron–Cousins system to allow for consistency with all previous data taken at at BSO and NURO (Robertson & Jordan 2005, RS2000).

It is the purpose of this program to identify variations in the luminosity function for Selected Areas both in and outside of the Galactic plane. Ball State became a member of SARA in the fall of 2005 and has only recently begun to reduce data from this telescope. Previous data will be easily compared to this new data since all observations have been transformed to the standard system. After the initial data is reduced, it is expected that any necessary changes to the observing method will be made and that large samples will be obtained to allow for greater statistical significance.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Observations

Our data were obtained using an Apogee U42 camera on the SARA telescope at Kitt Peak National Observatory on June 7, 2007. The Apogee camera is a 2048 × 2048 pixel CCD which is thermoelectrically cooled to between −17°C and −20°C. Our observations were taken using 2 × 2 binning to decrease both readout time and file size. This binning set the plate scale to 0.77 '' per pixel and the field of view to 13.14'. Observations of standards were taken using the V,R,I,CaH, and B filters, and program fields were imaged through the R, I, and CaH filters.

We were able to image fields 109A through 109L giving us 12 of the 25 fields which comprise SA109. Our data gathering technique utilizes short, intermediate and long exposure sequences in all three filters. This ensures that the brightest sources are not over saturated in the short exposure sequence and that the the fainter sources are detected with reasonable signal–to–noise in the long exposure sequence. The use of the intermediate exposure is to allow for further source matching between the short and long exposures which gives greater statistical significance to photometric values. Since the long CaH exposure is 720s, it was essential to have a stable guide
star for the field. In the event that a stable guide star could not be found, we instead acquired six 120 s images. The limiting magnitude for our observations is $m(R) \sim 15.25$ and was determined by plotting our observed R magnitudes against the corresponding error in those measurements.

2.2. Data Reduction

The data reduction process for this program utilized IRAF, MaxIm DL, and Microsoft Excel. The initial IRAF reduction was done with the standard procedure of computing master darks and bias frames through the use of zerocombine and darkcombine. The master flats were computed using flatcombine and the object frames were processed using ccddproc. In the event that a proper guide star could not be found, as described in §2.1, the six 120s CaH exposures were combined at this point using imcombine. Then, for detections above a 50 count threshold, daofind was used to compute coordinate files, as well as, magnitude files using phot. For these detections the $fwhm = 4$ and a source aperture of 14 pixels was used. To transform the R and I magnitudes to the standard Kron–Cousins system the standards were first fit to the Landolt catalog values (Landolt 1983,1992) using fitparams. Then, invertfit was used to transform the object magnitudes to the standard system using values that were determined from the standard observations. Sources which did not have matching detections in all three filters, but were in the same exposure sequence, were excluded since proper colors could not be computed by fitparams.

Using MaxIm DL, the world coordinate system(WCS) of each field was established by using pinpoint astrometry. In this step the long R exposure images were processed for each field since they have positions for all stars detected. After the installation of the WCStools package in IRAF, imstar was used along with the coordinate file previously compiled by daofind to determine the $\alpha(2000)$ and $\delta(2000)$ of each detection. The coordinate and magnitude data were then loaded into Excel. At this point a sorting protocol was established to 1) remove spurious detections between filters, 2) identify multiple detections of the same bright source, and 3) match detections between the three exposure length sequences for a single star. Treating each sequence separately, detections which were missing any magnitude or color values were removed. Then detections within 15 pixels of column 109 were eliminated, by sorting by physical X coordinates, since this column is non-responsive and leads to inaccurate photometry. Next, $\sigma(X)$ and $\sigma(Y)$ were computed for all detections in each filter. By removing all detections with σ greater than $2 \sigma_{avg}$, all detections with spurious matches between filters were excluded. The WCS values determined by imstar were then added to the data sheet and physical coordinates were matched between photometric and astrometric detections. This match was made for all the detections in the long sequence and comparison of photometric and astrometric magnitudes for all twelve fields yields $\sigma_{avg}(R)=0.219$ magnitudes. Matches between the short, intermediate, and long exposures were made by comparison of physical coordinates as well as photometric values. The multiple detection photometry values were averaged and the σ was computed for the colors and magnitudes. For the matches in all 12 fields, $\sigma_{avg}(R)=0.043$, $\sigma_{avg}(\text{CaH})=0.048$, $\sigma_{avg}(R-I)=0.038$, $\sigma_{avg}(\text{CaH}-r)=0.054$.

Due to the fact that SARA data for this program is fairly new, there is no definite reduction procedure in place. Thus, some parts of the reduction process will likely be automated through the development of further IRAF protocol, as well as the extensive utilization of Excel macro’s.

3. DATA AND RESULTS

3.1. Color–Color M Star Luminosity Classification

As explained in §1, the presence of CaH in the spectrum of a M star is a clear indicator that it is a dwarf. The photometric color–color plot in Figure 1 shows the difference between the dwarf and giant sequences. The dividing line is the location where the giant and dwarf loci diverge as has been previously determined by Dr. Robertson. To the left of this dividing line are stars of higher temperature where CaH can not be used to determine spectral class. To the right of this dividing line the M dwarf locus displays excess absorption in the CaH magnitude when compared to the giant locus. These data are sorted by the error in $R-I$, with the highest quality data ($\sigma(R-I)<0.02$) directly correlated to the limiting magnitude of the project.

![Figure 1](image-url)
FIG. 1. — Color-color plot of SARA photometric detections in SA109 with giant and dwarf loci over-plotted.

Of particular interest, in the determination of the luminosity function, are the dividing lines which correspond to the integer ranges in absolute R magnitude. These ranges have been established using,

$$M_R = -6.862 + 61.375(R-I) - 108.875(R-I)^2$$
$$+ 90.198(R-I)^3 - 27.468(R-I)^4$$

for $0.4 \leq (R-I) < 1.0$, and

$$M_R = -114.355 + 408.842(R-I) - 513.008(R-I)^2$$
$$+ 286.537(R-I)^3 - 59.548(R-I)^4$$

for $1.0 \leq (R-I)<1.5$, as determined by Siegel et al. (2002) and are overplotted in Figure 1. The luminosity function and photometric color indices from Cox (2000) were used by Robertson & Mason (2007) to compute the expected number of M dwarfs for each square degree to a limiting magnitude of R=15. Using this method Gregory Mace determined the values shown in the last column of Table 1 for a limiting magnitude of R=15.25.
The Luminosity Function of M Dwarf Stars in Selected Area 109

<table>
<thead>
<tr>
<th>M(V)</th>
<th>Φ</th>
<th>M(R)</th>
<th>Spectral Type</th>
<th>d (pc)</th>
<th>Volume Sampled (pc³)</th>
<th>Quantity Expected for 1 deg² (R=15.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-2.41</td>
<td>6.90</td>
<td>K7</td>
<td>468</td>
<td>10373</td>
<td>40 ± 6.3</td>
</tr>
<tr>
<td>9</td>
<td>-2.32</td>
<td>7.72</td>
<td>M0</td>
<td>321</td>
<td>3341</td>
<td>16 ± 4.0</td>
</tr>
<tr>
<td>10</td>
<td>-2.14</td>
<td>8.50</td>
<td>M2</td>
<td>224</td>
<td>1137</td>
<td>8 ± 2.8</td>
</tr>
<tr>
<td>11</td>
<td>-1.99</td>
<td>9.35</td>
<td>—</td>
<td>151</td>
<td>351</td>
<td>4 ± 2.0</td>
</tr>
<tr>
<td>12</td>
<td>-1.82</td>
<td>10.2</td>
<td>M5</td>
<td>102</td>
<td>109</td>
<td>2 ± 1.4</td>
</tr>
</tbody>
</table>

References — Cox (2000)

3.2. 2MASS Data

To better classify the M dwarfs, 2MASS data were compiled for all low error detections to the right of the dividing line in Figure 2. Matches were defined for all 2MASS detections as being within 3.6º (5 pixels) of our astrometric detections and having consistent photometry. Figure 3 is the color–color plot of the 2MASS data for our detections with the dwarf and giant loci overplotted (Bessell & Brett 1988). The dividing line has been predetermined by Dr. Robertson as the location where the giant and dwarf loci are not far enough apart to be discernible due to the average 2MASS error of ≈3.6 percent. This error has been plotted on the dwarf classifications to display their size, but are present for each point within the plot.

4. DISCUSSION

The data presented in Figure 2 show the distinctly separate colors of M giants and dwarfs. When the data are close to the dividing line, the difference is less obvious, and spurious classifications can occur if care is not taken. However, when grouping my data, to be plotted in Figure 3, I appear to have been overly strict in determining which stars in Figure 2 were dwarfs. This is evident by the large number of indeterminate detections which lie on, or very near, the dwarf locus in Figure 3 and may be M dwarfs. A further point by point comparison between Figures 2 and 3 will likely lead to better classification as well as a better determination of the dwarf and giant sequences near the dividing line in Figure 2.

Quantities which were presented in Table 2 are not exceedingly different from the expected values in Table 1. The quantities in Table 2 are generally within the expected error values that were determined using the accepted luminosity function. Since a detection is either a M dwarf, or it is not, Poisson statistics suggest an error of \(\sqrt{\text{number detected}}\) and this accounts for differences in the bottom three rows. The quantity in the second row of Table 2 is high even after taking into account these errors, which leads to the conclusion that there are more M0 dwarfs in SA109 than is described by the accepted luminosity function. The first row of Table 2 is not near the expected value for a number of reasons. The greatest of these is that nearly half of the range in question is truncated by the
and a knowledge of this is essential to our understanding of Galactic evolution. For SA109, which is near the galactic plane, the values of the luminosity function are of the same order of magnitude as would be expected by our current estimates of the luminosity function. The exception to this is early type M dwarfs which have a higher frequency than is expected. Yet, with such small numbers and high errors we can not be sure of our classification of this region as having an M dwarf excess until the entire region has been analyzed. The observation and reduction of data for other selected areas, within this program, will lead to better determinations of the luminosity function for low luminosity sources.

5. SUMMARY

The presence of CaH in the spectrum of a M star is a clear indicator that it is a dwarf. The determination of the number of dwarf stars of each absolute magnitude, in a given volume of space, establishes the luminosity function for that region of dwarf stars of each absolute magnitude, in a given volume.

GM thanks Dr. Lisa Prato of Lowell Observatory for giving him a wealth of knowledge on data reduction, as well as an extremely helpful LaTeX example with which I was able to establish a format for this paper. Thanks to Matt Wood, Florida Institute of Technology, and SARA for this REU opportunity as well as the observing time to have taken the data presented here. This project was funded by a partnership between the National Science Foundation (NSF AST–0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

REFERENCES

Matney, J.E., Robertson, T.H.,Jordan, T.M. et al., 2004, BAAS 136, 584
Mould, J.R., & Wallis, R.E., 1977, MNras, 181, 625

Robertson, T.H. & Furiak,N., 1995, BAAS 27, 1302 (abstract only)
Robertson, T.H. & Scott, A., 2000, BAAS 32 1392
Robertson, T.H. & Mason,J.R., 2007 (private communication)

GM thanks Dr. Lisa Prato of Lowell Observatory for giving him a wealth of knowledge on data reduction, as well as an extremely helpful LaTeX example with which I was able to establish a format for this paper. Thanks to Matt Wood, Florida Institute of Technology, and SARA for this REU opportunity as well as the observing time to have taken the data presented here. This project was funded by a partnership between the National Science Foundation (NSF AST–0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

REFERENCES

Matney, J.E., Robertson, T.H.,Jordan, T.M. et al., 2004, BAAS 136, 584
Mould, J.R., & Wallis, R.E., 1977, MNras, 181, 625

Robertson, T.H. & Furiak,N., 1995, BAAS 27, 1302 (abstract only)
Robertson, T.H. & Scott, A., 2000, BAAS 32 1392
Robertson, T.H. & Mason,J.R., 2007 (private communication)

GM thanks Dr. Lisa Prato of Lowell Observatory for giving him a wealth of knowledge on data reduction, as well as an extremely helpful LaTeX example with which I was able to establish a format for this paper. Thanks to Matt Wood, Florida Institute of Technology, and SARA for this REU opportunity as well as the observing time to have taken the data presented here. This project was funded by a partnership between the National Science Foundation (NSF AST–0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.